
 

 
 
 

Software Performance Modeling  
in PC Clusters  

 
 

by 
 

 Wolfgang Baer 
 Associate Research Professor of Computer Science 

Naval Postgraduate School, Monterey CA 93943 
Tel. 408-656-2209 EMail baer@cs.nps.navy.mil 

 
 Steve Decato 
Maj. US Army 

Naval Postgraduate School, Monterey CA 93943 
 
 

ABSTARCT: 
 Execution of course grain parallel programs in PC clusters promises super-computer 
performance in low cost hardware environments. However the overhead associated with data 
distribution, synchronization, and peripheral access can easily eliminate any performance gain 
promised by the individual cluster capacity. Application specific system performance analysis is 
required both to engineer PC cluster hardware and evaluate the cost effectiveness of parallelizing 
software components. 
 This paper presents a distributed system performance model and software analysis 
methodology suitable for estimating the execution times of large grain parallel application 
programs in clusters of PC hardware. The performance model emphasizes the use of application 
hardware performance results readily available in most systems. These are combined with single 
thread application software resource requirements in order to estimate the achievable execution 
rates in target clusters. 
 A case study of the analysis of a video realistic battlefield simulator implementation 
in a PC cluster running under Linux is presented. Benchmark results and performance estimates 
for specific candidate hardware configurations are calculated and compared with actual results. 
 
 
 
KEY WORDS: Distributed Programming, PC Cluster, Performance Prediction 

                                                                          1of                                               7/24/2009 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
01 SEP 2000 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Software Performance Modeling in PC Clusters 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School, Monterey CA 93943 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER
OF PAGES 

19 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



 

 

INTRODUCTION: 
 

 The study of computer architecture1,2,3 has long been a subject which includes the estimation of software 

execution speeds and resource requirements. In the past execution estimates have largely been studied with the hope of improving computer 

hardware designs of single machines. With the emergence of networked computers and computer clusters4 the problem of designing software 

which executes in a networked environment now requires the software designer to become aware of networked architecture issues.  

 Coding standards such as PVM5 , LAM/MPI6, and  DCE7 are now available to allow writing of portable code 

for an abstract distributed machine. Deciding when to utilize such available standards and actually write distributed code is not clear.  

*How to divide code into modules which can execute on 

separate machines?  

*How to estimate the performance improvement of such code 

divisions in a specific networked architecture? 

*When does it make sense to spend software development 

budgets on networked parallelization rather than faster 

single node hardware?  

 These are questions with which the software engineer and project manager must now deal. 

 This paper addresses these issues by providing a description of an analysis 

methodology applied to the problem of porting a perspective view scene generation program8,9 

from a single processor SGI workstation to a PC cluster environment. PC hardware has become powerful enough to compete with single 

workstations in recent years.  The question of how to evaluate performance of networked PC clusters and whether such clusters can can compete 

with parallel workstations such as available in ONYX and Challenge SGI machines is an opewn one which will be addressed in this paper. 

 

1) Serial Program Resource Description 

 

 In order to analyze the issue of porting workstation code to PC clusters it is necessary 

to provide a quantitative description of the programs to be implemented. Figure 1 shows a 

diagram of a generic sequential program. The program is divided into N calculations. Each is 

named by a numerical   label J. Each of the J calculations used part or all of the global data 

generated by the previous calculations as input data and in turn generates global data as output. 

  

                                                                          2of                                               7/24/2009 



 

 There are four resource measurements available to estimate the resource requirements 

of such a computation:  

*Its real time execution speed measured in wall clock seconds 

(RTEX[J]) *The average percent of the CPU utilized during this 

execution (CPU%[J]), *The data volume output DVOL[J,OUT] or 

input DVOL[IN,J] 

* The average message size used for in and output of the data    

MSGZ[J,OUT] and MSGZ[IN,J]. 

 It is convenient to write the resource characteristics of the program in the form of a 

matrix shown in figure 2. Here the rows have been labeled by the calculation names J while the 

columns have been labeled by the sequencial execution order, S, with which the calculations are 

carried out. Each element in the matrix is then characterized by the four resourcecharacteristics 

defined above. The diagonal elements represent the J’th sequential calculation in the original 

program defined in fig 1. The upper off-diagonal elements represent the send functions 

(SND)while the lower off-diagonal elements characterize the receive functions(RCV). Hence the 

send function  SND[0,N] is responsible for sending DVOL[0,N] bytes of data from calculation C 

[0,0] to the communicating media while function RCV [N,0] receives the same number of bytes 

from the media and provides them to calculation C[N,N]. Solid arrows show the flow of data 

from a calculation through a SND/RCV pair and into the program space of a receiving 

calculation. The communication functions are necessary in order to explicitly analyze the 

program in a distributed environment. For a sequential implementation in a single processor only 

he diagonal elements are required and the matrix reduces to the linear form shown in figure 1. 

 

  

 In this notation the general formula for the run time of the program is simply the sum 

of all the calculations. 

     eq. - 1                                    

 The average percentage of the CPU utilized during the execution of the program is 

then: 

      eq. - 2                         

                                                                          3of                                               7/24/2009 



 

 The number of CPU seconds (CPUS) utilized by the execution of the program can be 

consistently calculated from the formula: 

     eq. -3                         

 The three equations presented above are sufficient to calculate the two main 

performance characteristics of a program. How fast it runs is given by RTEX. How much of the 

computer is being utilized to execute the run is given by CPU% or alternatively by the number of 

CPU seconds (CPUS) used by the program. 

 The purpose of this paper is to answer performance question when an already existing 

program is ported from one, possibly distributed, environment to another. It is therefore assumed 

that an executing copy of the code is available in some environment and that performance 

measurements are available.  

 Translating performance estimates then divides into two main tasks. These are, 

 1) estimate the resource requirements of a calculation module when changing 

machines. 

 2) estimate the resource requirements of the SND and RCV functions when changing 

the communication media between calculation modules.  

 

1.1 - Battlefield Visualization Program Test Case 

 

 The cluster analysis presented in this paper uses an existing video realistic battlefield 

simulator8,9 as a test case. The bare bones version of the program is divided into N calculations. There are three main calculation types. 

These are 1) a terrain data server which retrieves multi resolution (64 km to 1m) terrain data posts required for the calculation from disk, 2) a set 

of 1 to N-1 ray tracers each of which calculate the pixel color index for 1/(N-2)’th portion of the screen, and 3) a display calculation which 

interprets the index and scales pixel intensities to a display window. 

  A sequential implementation of the  test case program is available and executes in a 

conventional single processor machine. Each of the calculating modules C[J,J] represented by 

diagonal elements passes a volume of data DVOL[J,S] to other modules through global memory 

areas using simple assignment statements such as, 

         /* RCV is implemented as*/   LOCAL_VARIABLE    = GLOBAL_VARIABLE;  

          /*SND is implemented as*/    GLOBAL_VARIABLE = LOCAL_VARIABLE; 

                                                                          4of                                               7/24/2009 



 

 These statements are part of the calculating module C[J,J] code. Their effect on run-

time performance is included in the measurement of the module. Hence all off-diagonal 

execution times (RTEX[J,S])  in the programs resource characteristic matrix are zero and the 

double sum in equations 1,2 and 3 above reduces to single sums. 

 The sequential program characteristics of these calculation types for a single frame 

calculation in a 100Mhz Pentium 64MB using a Diamond 64 2MB display card are listed below. 

 

 Calculation Name         Characteristic                                Comment          

Data Server [0,0]  RTEX[0,0] =.2 sec.     one fifth execution per frame  

                           CPU%[0,0] =.8  

                      DVOL[0,N] =.25MB data broadcast to raytracers 

 MSGZ[0,N] = 1024 average data block in bytes 

 

Raytrace [1,1]  RTEX[1,1] =.6/(N-2)  run time per frame 

to  CPU%[1,1] = 1                         saturates CPU when running 

Ratrace[N-1,N-1] DVOL[1,N] = 216/(N-2) screen portion sent to display 

 MSGZ[1,N] =256 column size  

 DVOL[0,N] =.25MB received from server 

 MSGZ[0,N] = 1024 average message size  

 

Display [N,N]             RTEX[N,N] =.04  display rate  DIAMOND 64 2MB 

                                     CPU%[N,N] =1  saturates CPU 

                                     DVOL[N,1] =216     total 256x256 screen size(bytes) 

                                     MSGZ[N,1] =256  minimum message received  

  

 For sequential execution when the communication media is global main memory only 

the diagonal elements of the run time equation 1 are non zero and the value is given by, 

                . 

                                                                          5of                                               7/24/2009 



 

 This agrees with the actual run time for a typical view calculated when the viewpoint 

is situated 300 meters above the ground with a 30 degree look down angle moving at 60 miles 

per hour requiring the terrain data server to execute a full update cycle once every five frames.  

 This video realistic battlefield visualization program has been coded for parallel 

execution in a 21 processor Transputer and PowerPC 601 based parallel computer costing $250K 

in 1994. It operates at approximately 16 FPS on this machine and at 1.2 FPS on a $1500 PC. Our 

immediate problem is whether or not it makes sense to port this program to a PC cluster using 

low cost communication links and how fast we can expect it to operate as we add PC computing 

nodes?    

 

2) Conversion of Resource Parameters from One System To Another 

 The simplest option for increasing software performance is simply to buy faster 

compatible hardware. In order to calculate the performance parameters of a calculation module 

from one machine to another it is necessary to introduce two new parameters. These are the CPU 

speed of machine M (CPUSPEED[M]) and the peripheral or I/O speed of machine M 

(PERSPEED[M]). We also note that the difference between the CPU seconds used in a 

calculation and the run time of the calculation is usually attributed to the time the calculation has 

to wait on a peripheral to complete its task. The relation, 

eq. 4                                     

 shows this relationship using WAITSEC to specify the time the calculation is waiting. 

 If a CPU M2 is faster than a CPU M1 we would expect the corresponding CPU 

seconds used for a calculation to be decreased as follows, 

eq. 5                                 

 Similarly if the peripheral speed of machine M2 is faster than M1 we would expect 

the wait time for peripheral response to decrease as follows, 

eq. 6                                

 

 We can now calculate the run-time of a calculating module in the second computer 

from the resource measurements in the first computer by substituting eq. 5 and eq. 6 into eq. 4 

                                                                          6of                                               7/24/2009 



 

and using the definition of CPUS from eq. 3. The resulting conversion equations simplify to the 

following equation for the run time 

eq. 7  

and the CPU utilization, 

eq. 8           . 

 Although absolute measures of CPU and peripheral speeds are often given in terms of 

standard benchmarks for our purposes it should be noted that only the ratio of speed appear in 

the resource conversion equations. If we double the CPU speed without changing the peripherals 

in our system the run time of a calculating module which utilizes half the CPU is given by eq. 7 

as, 

               

 Hence only a 25% speed up is achieved because the sample calculation spends the 

same amount of time waiting in both machines.  

 For our application the CPU is utilized almost 100%. The SpecInt95 benchmark10 of the 

Pentium Pro 200Mhz machine is 8.2 compared with 3.33 for the Pentium 100 we are using here. If these numbers can be taken as relative 

measures of computer speed the RTEX for a frame on the Pentium Pro 200 should be 0.34 seconds or 3 FPS. A dual Pentium Pro would be 

expected to run between 4-5 FPS. This simple hardware upgrade is the practical criteria against which performance improvement achieved by 

cluster implementation must be compared.  

 

3) Estimation of the SND and RCV Functions Resource Requirements 

 

 In the previous section we showed how resource parameters are converted between 

machines assuming no code changes and no architectural changes in the topology of the 

communication media in which the program executes. In order to estimate the performance of 

code ported from one network topology to another it is necessary to take the effect of the 

message passing overhead into account. We have formally included the message passing 

functions in figure 2 as the off-diagonal SND and RCV functions. In the simple case of a 

sequential program executing on one CPU these could be ignored. In a distributed environment 

however explicit functions must be included which in themselves require CPU and wall clock 

resources. We must therefore estimate the overhead associated with these functions. 

                                                                          7of                                               7/24/2009 



 

 We will assume that data is transmitted as messages of size MSGZ bytes. The 

average message size transmitted from calculation J to calculation S is then given by,  

 eq. 9                      . 

 We will further assume that the communication system utilizes blocks of size BLKSZ 

in bytes so that the message is brocken into a sequence of full block transmissions (#BLKS) plus 

the number of bytes in the residual (#LEFT) which does not fit into a full block. The message 

size is related to these parameters as follows: 

eq 10                   

 A typical communication system will take some time (MSGSETUP) to process a 

message transmission request. It will break the message into blocks and take some additional 

time (BLKSETUP) to set up the transmission of each block. The actual data transfer then 

happens on a byte level interrupt basis and takes the inverse of the low level communication 

bandwidth (1/LLCBW) per byte to transmit. Using these parameters to characterize the message 

transmission the real time required for a message to go from calculation J to S is give by, 

eq 11     

 To estimate the cpu utilization we note that both MSGSETUP and BLKSETUP 

usually involve CPU calculations without input output wait time. All the waiting occurs in the 

low level bandwidth term. If the communications peripheral were fast enough to keep up with 

the IO bus of the system then the CPU would be kept busy all the time and the run time and CPU 

seconds would be the same. The CPU utilization is then calculate by utilizing eq. 3 as follows: 

eq 12              

 Here we have used the IO bus band width (IOBBW) in the numerator as a limiting 

factor. If the communicating peripheral is faster than the IO capability of the machine then the 

CPU%[J,S] = 1, hence the formula only holds for communication systems which are slower than 

the CPU’s to which they are attached (i. e. LLCBW < IOBBW). 

 We have developed formula for communications functions resource parameters which 

can be substituted into eq. 1 and eq. 2 in order to estimate the overall performance of the 

program in a cluster. These formula are given in terms of new variables such as setup time and 

band width. In order for these expressions to be useful we must find ways of determining the 

value of these new parameters for the candidate clusters topologies under consideration. 

                                                                          8of                                               7/24/2009 



 

 

3.2 Simplified Bandwidth Expressions 

 

 The formula developed in the last section define resource requirements for 

communication functions in terms of parameters which are application software dependent 

(DVOL, #MSG) and parameters such as setup time and bandwidth which depend only on the 

characteristics of the communication system itself. Much like the CPU speed and peripheral 

speeds parameters introduced in section 2 the application independent parameters can be 

measured once for a given configuration and applied to performance estimation of any program 

one wishes to port. 

 In order to facilitate measurements it is useful to introduce the application to 

application program bandwidth (A2ABW). This is the bandwidth of data sent from one 

calculation to another including all communication overhead from all the layers of data handling 

subsystems involved. This is after all the number most software designers wish to know. How 

fast can I get data from the address space of one calculation to another? A2ABW is simply the 

total data volume one program wishes to send divided by the real time it takes to send it. 

Utilizing the formula derived above the value of the application to application bandwidth is 

given by: 

eq. 13  

 Interestingly enough this expression is independent of the data volume and depend 

only upon the size of the messages an application wishes to send and the characteristics of the 

communication subsystem. 

 Figure 3 shows a generic plot of the application to application bandwidth against 

message size. Communication parameters introduced in the can be extracted from features of this 

plot as follows. The locations of the bandwidth drop spikes are one BLKSZ apart and show the 

effect of the additional block setup time required whenever a new block is needed. 

  

 The shape of the curve to the first block size is independent of the number of blocks 

(#BLKS) and, if extended would reach the application level communication bandwidth 

                                                                          9of                                               7/24/2009 



 

(ALCBW) asymptotically. Clearly as the message size increases to infinity the effect of the 

message setup time can be ignored and equation 13 reduces to: 

eq. 14                            . 

 The formula for application level bandwidth suggests that we might be able to 

rewrite eq. 13 in terms by rewriting the terms involving BLKSETUP and LLCBW as follows,  

eq. 15 . 

 The is strictly true only if we treat the number of blocks (#BLKS) parameter as a 

floating point value and ignore the bandwidth drop spikes. The term in the bracket will be 

recognizes as the reciprocal of the application level bandwidth and by substituting this definition 

into eq. 13 we get the simplified bandwidth formula, 

eq. 16                           . 

which is shown as the dashed curve in figure 3. The simplified formula of eq. 16 acts like an 

upper level envelope to the more accurate eq. 13 since it ignores the effect of lower level 

blocking. Similarly eq. 13 is an upper level envelope to a still more accurate formula which 

would include the effects of still lower level setup times. The cumulative effect of these 

approximations at all levels is to over estimate the communication band with relative to low level 

hardware capability. For our purposes the recognition that such over estimation is taking place is 

largely eliminated by using actual communication band with measurements hence the simplified 

formula are usually adequate.  

 Assuming we have made a measurement of ALCBW[J,S] by measuring the 

bandwidth for a large message we can now calculate the MSGSETUP parameter by making a 

second measurement at some small message size. If we designate the application to application 

bandwidth of message size N bytes as A2ABW@N then the message setup time can be 

calculated from this measurement from eq. 16 as follows: 

eq. 17                      . 

 Hence by making two measurements, one for a small message of perhaps 100 bytes 

and one for a very large message on the order of megabytes we have sufficient information to 

characterize the upper bound bandwidth of the communication channel represented by the 

dashed curve in figure 3. 

                                                                          10of                                               7/24/2009 



 

 In terms of these measurements and the simplified band with expressions of eq. 16 

and eq. 17 we can rewrite the communication resource parameters as follows. 

 The run time for the SND and RCV functions from eq. 11 is now, 

eq 18               . 

 Since run time for a communication is the same whether one is at the receiving or 

transmitting end this equation is symmetric in J and S meaning that the run time for the SND and 

RCV function is identical. 

 The CPU utilization from eq. 12 tentatively reduce to, 

eq 19       . 

 We say tentative because CPU utilization is generally not symmetric between send 

and receive functions. Often the receive side must do more error checking and takes a higher 

fraction of the CPU than the send side. We have introduced the notion of an application bus 

bandwidth in the parameter APBBW to formally account for the fact that the CPU utilization is 

essentially a measure of the time the CPU waits on the network. The APBBW is the bandwidth 

measured from the application to peripheral without actually sending the data. It is asymmetric 

and can be measured by taking CPU% measurements on the send and receive side of the 

communication system. For approximately symmetric communication protocols this parameter 

can be equated to the large message application to application bandwidth when the computer is 

in a loopback configuration in which all the communication software is exercised but data is 

actually transferred within a single machine and not communicated to the outside. 

 

 3.1 Communications Parameters Measurement11 

    

.  Communications bandwidths and CPU utilization were measured as a function of 

message size using networked 100Mhz Pentium PC running under the Linux operating system. 

Communication hardware utilized included 3COM 100Mbit per second and 3COM 10Mbit per 

second ethernet cards.  
Table 1: Communications Parameters Measurement Results 

 Socket  
TCP/IP 

Socket 
UDP 

LAM/MPI 
Measured 

 LAM/MPI 
Theoretical 

Message size in 
bytes 

BW 
MBS 

CPU
% 

BW 
MBS 

CPU
% 

BW 
MBS 

CPU
% 

 BW 
MBS 

% 
ERROR 

                                                                          11of                                               7/24/2009 



 

200 .5 23 .58 21 .31 43  .31 0% 
600 1.01 23 1.08 21 .73 39  .73 0% 

1,000 1.4 23 1.57 21 1.0 42  .99 1% 
1,400 1.6 23 1.78 21 1.2 42  1.17 3% 
2,000     1.3 36  1.35 4% 
6,000     1.9 36  1.79 6% 
10,000     1.8 36  1.91 6% 
20,000     2.1 39  2.01 4% 
80,000     1.8 27*  2.09 14% 
640,000     2.0 67*  2.1 5% 

*NOTE: Setup times of 1to 2 sec and disk activity indicated disk swapping  

 Communication software included socket test code12 utilizing UDP and TCP/IP protocols, the LAM 

implementation of the Message Passing Interface using MPI_Send() and MPI_Recv() functions. Though various network topologies were tested 

the primary results required for cluster performance analysis are direct point to point communications between otherwise idle machines with no 

additional network traffic. The results are shown in table 1 above. All measurements were made by sending messages of size shown in column 

one back and forth between two machines a large number of times while the resource measurement function TOP was running. The total number 

of bytes sent was divided by half the total time in order to get the one way bandwidth. The last message received was compared with the first sent 

for error detection. TCP/IP and LAM/MPI measured values shown on table 1 had no transmission errors. UDP had errors and was unreliable as 

expected. We noticed two important features of TCP/IP transmission which were surprising: 

 1) Errors occur when message sizes exceed the ~1500 ethernet packet size. 

 2) The socket write commands do NOT block, hence stacking up sequential writes in 

                         a tight loop still causes errors. 

 We found these effects to be true on SUN and SGI workstations using TCP/IP as 

well as under FDDI communications links when packet sizes were above 4500 bytes. Hence 

socket transmission though faster could not be considered a reliable application to application 

protocol without adding error checking software. The LAM/MPI implementation, though slower 

than direct socket code, is therefore the indicative of reliable application to application 

performance.previous section were estimated. The parameter values for the TCP/IP and 

LAM/MPI measurements are shown in Table 2 below.  

 Parameters from Table 2 were used in eq. 16 to calculate the application to 

application bandwidth for both TCP/IP and LAM/MPI. The last two columns of table 1 shows 

the theoretical calculations and the% error from measured result for the LAM/MPI 

communication links. Below 1000 byte size messages errors are negligible while above this size 

errors of 4 to 6% indicate the setup and handling time of internal block structures is not modeled 

                                                                          12of                                               7/24/2009 



 

accurately in the approximation represented by eq. 16 as expected. For TCP/IP eq. 16 and 

measured results matched exactly for the ranges shown in table 1. 

 

.   
Table 2: Communication Measurement Parameters for T100 links between Pentium 

100Mhz PC’s 
Parameter Description TCP/IP 

Value 
LAM/MPI 

Value 
APLCBW Application Level Communication 

Bandwidth in Mega Bytes 
2.5 2.1 

MSGSETUP Message Setup Time in Milli Seconds .4 .47 
APBBW Application Bus Bandwidth  

in Mega Bytes 
11 5.3 

CPU% CPU utilization for message sizes 
above 100 bytes 

23% 39% 

 Using the measured values from table 1 communications parameters presented in the 

 CPU utilization and application bus bandwidth were calculated from eq. 19. For 

messages sizes above 100 bytes setup time is negligible and the CPU% is given by a the ratio of 

application level communication to bus band widths independent of message size. An 

independent measure of socket transfer bandwidth using two tasks on a single machine verified 

the 11 Mbyte per second transfer rate between main memory address spaces of two executing 

processes using the socket read/write calls. 

 

4) Cluster Execution Analysis 

 

 The formula developed in section 3 allow us to estimate the communication 

overhead introduced by message passing SND/RCV calls as functions of application data 

volumes, average message sizes, and application independent communication parameters. We 

are therefore in a position to estimate the run time of an application in a PC Cluster given only 

the sequential run time (RTEX[J,J], the sequential CPU utilization (CPU%[J,J]), and the inter 

calculation data transfers characterized by DVOL[J,S] and #MSG[J,S] as defined in Figure 2. To 

do so, however, requires a further examination of the data dependencies between calculations in 

order to determine which, if any, calculations can be run in parallel.  

                                                                          13of                                               7/24/2009 



 

 In general calculations can only be run in parallel if they are data independent. If in 

figure 2 the DVOL[J,S] = 0 between two calculations J and S they do not transfer data and each 

calculation can proceed independently. This case applies to the ray trace calculations j=1 to N-1 

in our test application. A second category if data independence occurs when data is transferred 

between two calculations however the arrival time is not critical. This requires data transfer 

resources to be accounted for, but the exact order of such transfers are not critical. The terrain 

data server J=0 in out test application falls in this category. Terrain data is required by the ray 

trace calculation but, since these calculations are written to utilize low resolution background 

data when more recent high resolution data is not available, the only penalty for late data arrival 

is a degradation of picture quality. Since this happens only when the eye point is moving at high 

velocity the degradation is interpreted by the operator as an image blur which is expected from 

high speed motion and thus considered acceptable in the simulation. From an analytic point of 

view if we do not care when the data arrives we can rearrange the location of the SND and RCV 

functions for such calculations since the strict time order of execution is not required. 

 Data dependency considerations allows the sequential program matrix from figure 2 

to be rearranged into a parallel execution schedule as shown in figure 5. Note the jump from a 

sequential matrix to a parallel schedule is application data dependent and requires the ingenuity 

of a program analyst on a case by case basis. What we show in figure 5 are three calculation 

types. The terrain data server, J=0, broadcasts its data to the ray tracers but otherwise runs 

continuously and in parallel with the other processes. The ray tracers can all run in parallel but 

their output is required input for the display process, J = N, which must therefore be run 

sequentially to them. 

 In calculating the resource parameters shown in figure 5 the RTEX and CPU% for 

the raytrace and display calculations were taken directly from the sequential characteristics given 

in section 1.1. The terrain data server executes in whatever time is available since it its high 

resolution output is required on an as available basis explained above. The CPU utilization for 

the SND and RCV functions are all identical at 39% assuming a LAM/MPI environment. While 

there are three RTEX values calculated from the bandwidth measurements (see Table 1) and eq. 

18. The results for a 256x256 pixel image size are listed in tabel 3 below. 

 

                                                                          14of                                               7/24/2009 



 

 

 

 Note the communication load represented on the output is dependent on the frame 

rate per second (FPS) while the communication load from the terrain data server depends on the 

motion of the eye point and is independent of the frame rate. Figure 5 below summarizes the 

program resource characteristics when our test program is divided to execute in N processors.  

   

 The numerical value along the bottom row shows the run-time in each time slice 

which can not be executed in parallel. These numbers are no longer the sum of all the run time 

values of each sequential calculation as given by eq. 1 but rather the sum of the maximum run 

time in each sequential time slice. For the four time slices shown above the formula is, 

eq. 20                  . 

 The 0.25 seconds for terrain data transfer is true each second of run-time. Hence at 

RTEX =1 the formula gives the relation between FPS and the number of processors. The 

maximum frame rate for an infinite number of processors is 3.75 frames per second. This is not 

great. The main culprit is the communication load represented by the 0.16*FPS term. The higher 

the frame rate the more data must be sent to the display processor and the longer it will take. The 

communications load therefore severely limits the effectiveness of the cluster approach. 

 In the Transputer architecture multiple hardware links are utilized to eliminate the 

bottle neck on the display processor. To test this approach in PC hardware we installed several 

communications cards and ran multiple TCP/IP communication treads. Typical 

A2ABW(MB/sec)results are shown in table 4. 

  At a message size of 256 bytes this represents a 20% improvement in run time 

execution at the cost of 100% increases in CPU cycles. Hence a custom socket coded 8 processor 

system using 6 communications receive threads would change the 0.16 *FPS term in eq. 20 

to.1*FPS and generate 3.1 FPS while a infinite number of processors would give only 5.3 FPS. 

 Given the level of code characterization presented in section 1.1 for our battlefield 

visualization test case the Cluster analysis would end here. We cannot improve upon the 

schedule shown in figure 5 or the performance predictions of eq. 20 within the confines of the 

data provided in section 2. Only by appealing to additional detailed knowledge of the code 

                                                                          15of                                               7/24/2009 



 

internals, and breaking the code down into finer grained calculations  can further run time 

improvements be made. Using such knowledge is a little like pulling rabbits out of a hat since the 

reader has no means to judge the truth of our code specific assertions. We feel however that such 

code specific improvements will inevitable become part of a Cluster port analysis and include a 

few words here as an example.  

 

4.1 Test Case Specific Improvements 

 

  Examination of the test case code shows that the SND, RCV for the raytrace 

processors can be run in parallel rather than sequentially as shown in figure 5. This is because the 

terrain data dependency has been programmed to contain a low resolution fall-back algorithm 

and the output can be sent more frequently than at the end of the calculation indicated by the 

sequential schedule. A simple formula for combining calculations which can be run in parallel 

(SP) and those which must be run sequentially (Ss) in one machine can be derived by assuming the parallel programs will fully utilized the 

machine. RTEX is then equal to, 

eq 21                                    . 

 This formula holds in our case since the raytrace calculation is always available to 

take up spare cycles relinquished by other processes in the sum and the context switching 

overhead can be neglected. If the three raytrace functions in processors 1 to N-1 are  run as 

parallel threads The formula for the run time using FPs as independent variable is,  

eq. 22a                          . 

 Here N is the number of processors in the parallel configuration. There are at least 

three processors. FPS is the frame rate per second. The first term is the CPUS for receiving 

terrain data. Here the 0.39 is the CPU% for the receive function. The second is the ray trace 

calculation. The third term is the communication load to the display processor. All three are run 

in parallel. 

 We can also run two communication cards with multiple threads of the display RCV 

function speeding up this component by 20% according to measurements reported in table 4. By 

applying eq. 21, the display processes RTEX estimate is, 

eq. 22b                            . 

                                                                          16of                                               7/24/2009 



 

  The 0.04*FPS is the X-window display time. While the second term denotes the 

receive communications load. Note the formula is written explicitly using A2ABW(MSGZ) as a 

parameter in order to account for internal buffering into messages larger than the 256 bytes 

originally specified. This requires code changes and restricts the number of parallel processors to 

(216 = MSGZ*(Nmax -2)) - a code specific effect. The expected frames per second is calculated as the minimum of eq. 22 a and b. The result is 

plotted in figure 6a for the candidate Cluster configuration shown in figure 6b. 

 

 The Cluster configuration diagram shows three networks. One to broadcast data to the 

ray trace processors and two to carry the resultant image date to the display processor.  

 The shape of the performance estimates in figure 6a is quite typical. Initially the 

performance dips due to the increased overhead of explicit send and receive functions added to 

the code. After adding 4 processors the performance improves indicating a good parallelization 

of calculations has been found. Lastly the effect of the communication bottleneck in the display 

processor limits the otherwise linear speed up in the ray trace processors.  

 

 

 

 

5) Conclusion 

 We have described a general method for predicting the performance of software in a 

PC cluster. The technique assumes the run time, cpu utilization, and data communications 

volumes are known and provides formula for calculating program performance in a distributed 

message passing environment. The method concentrates on application to application 

communication performance. It provides simple expressions for message passing overhead in 

terms of a few easily measured communications parameters. Comparison between theory and 

measured communication characteristics appears quite good in the test case measured. 

 We also applied this technique to analyze the benefit of porting an existing battle field 

visualization application to a networked cluster. This exercise serves both as a test case for the 

analysis technique and provides guidance to program development questions for our project.  

                                                                          17of                                               7/24/2009 



 

 The conclusion for our test case, summarized in figure 6, shows that after an initial 

performance drop to accommodate the message passing overhead a linear performance increase 

is expected by increasing the number of processors until a display bottleneck is reached. We 

estimate that by utilizing eight processors, modifying code to utilize message passing 

subroutines, and optimizing message structures for a networked environment we would achieve 

8.7 FPS or approximately 7 times speed up over a single node sequential implementation.  

 The question of whether or not to actually build a cluster implementation now 

becomes a price, packaging, and maintenance issue. We believe better performance can also be 

achieved by buying a faster single machine rather than expand into a cluster. We have therefore 

purchased a dual Pentium 200MHZ Pro machine to explore whether the predicted 4 to 5 fold 

speed up estimated by eq. 7 can be achieved with less cost, maintenance, and storage overhead. 

 For our project Cluster configurations built from PC components are a viable 

alternative for achieving speed increases. This conclusion is specific to the characteristics of our 

software task. The relatively large message sizes inherent in our project minemize the 

communication penalties associated with message passing implementations. Other applications, 

with smaller message traffic may perform better. The importance here is not the specifics of our 

project but that message passing implementations come with significant software performance 

penalties which may eliminate speed advantage one hopes to achieve. Quantitative analysis on a 

case by case basis is required. This paper has collected both the formula for such analysis and 

showed how they are used to perform software design trade-offs and optimize Cluster 

configurations.  

                                                                          18of                                               7/24/2009 



 

                                                                          19of                                               7/24/2009 

 
ACKNOWLEDGEMENT 
The authors gratefully acknowledge the support of the following agencies: 
     US ARMY Texcom Experimentation Center, Fort Hunter Liggett, Jolon, CA 93928 
     TRADOC Analysis Command-Monterey,Naval Postgraduate School, Monterey, CA 93943 
 
 
REFERENCES: 
 
1)J. Hennessy;D. Patterson, Computer Architecture: A Quantitative Approach, Morgan 
Kaufmann Publishers, Inc., San Mateo, 1990,( see chapter 7) 
 
2)Y. Yan; X Zhang; Y. Song, An Effective and Practical Performance Prediction Model for 
Parallel Computing in Nondedicated Heterogeneous NOW, J. of Parallel and Distributed 
Computing 38,63-80(1996) 
 
3)Z. Xu, X. Zhang; L. Sun, Semi-empirical Multiprocessor Performance Predictions, J. of 
Parallel and Distributed Computing 39,14-28(1996) 
 
4) G. F. Pfister, In Search of Clusters: The Coming Battle in Lowly Parallel Computing, Prentice 
Hall, New Jersey, 1995 
 
5) PVM Parallel Virtual Machine  
 
6) W. Gropp; E. Lusk; A. Skjellum, Using MPI: Portable Parallel Programming with the 
Message-Passing Interface, The MIT Press, 1996 
  
7)J. Shirley;Hu Wei; D. Magid, Guide to Writing DCE Applications, O’Reilly&Associates, Inc., 
Sebastapol, 1994 
 
 
8) W. Baer, Scalable Parallel Processing System for Video Realistic Real-time Battlefield 
Simulation, Proceedings of the 1994 Simulation Multiconference, Hyatt Regency  Aventine, La 
Jolla San Diego, California, April 11 - 13, 1994, p. 77, Edited by Michael J. Chinni U.S. Army 
AMCCOM-ARDEC 
 
9) W. Baer ,Implementation of a Perspective View Generator Transputing ‘91, P. Welch et al. 
Vol. 2, pp 643-656, ISOPRESS Amsterdam,  1991 
 
10) SPEC, Better Benchmarks, Standard Performance Evaluation Corporation, Manassas, 1997 
 
11) S. W. Decato , Parallel Processing Performance Evaluation of Mixed T10/T100 Ethernet 
Topologies on Linux Pentium Systems, Thesis , Naval Postgraduate School, Monterey Ca. 
March 1996 
 
12)W. R. Stevens, Unix Network Programming , Prentice Hall 1992 


